時系列変化する動的グラフに関する参考文献 (http://www.cs.cornell.edu/Courses/cs6850/2008fa/より)
The Time Axis
- Survey Paper
- J. Kleinberg. Temporal Dynamics of On-Line Information Streams. Draft chapter for the forthcoming book Data Stream Management: Processing High-Speed Data Streams (M. Garofalakis, J. Gehrke, R. Rastogi, eds.), Springer.
- Survey Paper
- Short Time Scales: Usage Data and Bursty Dynamics
- L.R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition. In Proc. IEEE, Vol. 77, No. 2, pp. 257-286, Feb. 1989
- J. Allan, J.G. Carbonell, G. Doddington, J. Yamron, Y. Yang, Topic Detection and Tracking Pilot Study: Final Report. Proc. DARPA Broadcast News Transcription and Understanding Workshop, Feb. 1998.
- R. Swan, J. Allan, Automatic generation of overview timelines. Proc. SIGIR Intl. Conf. on Research and Development in Information Retrieval, 2000.
- S. Havre, B. Hetzler, L. Nowell, ThemeRiver: Visualizing Theme Changes over Time. Proc. IEEE Symposium on Information Visualization, 2000.
- J. Kleinberg. Bursty and Hierarchical Structure in Streams. Proc. 8th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, 2002.
- J. Aizen, D. Huttenlocher, J. Kleinberg, A. Novak. Traffic-Based Feedback on the Web. Proceedings of the National Academy of Sciences 101(Suppl.1):5254-5260, 2004.
- R. Kumar, J. Novak, P. Raghavan, A. Tomkins. On the bursty evolution of Blogspace. Proc. International WWW Conference, 2003.
- Y. Zhu and D. Shasha. Efficient Elastic Burst Detection in Data Streams. Proc. ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, 2003.
- E. Gabrilovich, S. Dumais, E. Horvitz. NewsJunkie: Providing Personalized Newsfeeds via Analysis of Information Novelty. Proceedings of the Thirteenth International World Wide Web Conference. May 2004.
- M. Vlachos, C. Meek, Z. Vagena, D. Gunopulos. Identifying Similarities, Periodicities and Bursts for Online Search Queries. Proc. ACM SIGMOD International Conference on Management of Data, 2004.
- A..-L. Barabasi. The origin of bursts and heavy tails in human dynamics. Nature 435, 207-211 (2005).
- Micah Dubinko, Ravi Kumar, Joseph Magnani, Jasmine Novak, Prabhakar Raghavan, Andrew Tomkins. Visualizing Tags over Time. WWW2006 Conference. See also the demo of flickr tag visualization.
- Xuerui Wang and Andrew McCallum. Topics over Time: A Non-Markov Continuous-Time Model of Topical Trends. Conference on Knowledge Discovery and Data Mining (KDD) 2006.
- Xuanhui Wang, ChengXiang Zhai, Xiao Hu, and Richard Sproat, Mining Correlated Bursty Topic Patterns from Coordinated Text Streams. Proceedings of the 2007 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'07 ), pages 784-793.
- Short Time Scales: Usage Data and Bursty Dynamics
Temporal Analysis and Bursty Phenomena
- J. Leskovec, L. Backstrom, J. Kleinberg. Meme-tracking and the dynamics of the news cycle. Proc. 15th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, 2009.
- See also the commpanying MemeTracker site, which uses the ideas in this paper to visualize the news cycle.
- L. Backstrom, J. Kleinberg, R. Kumar. Optimizing Web traffic via the Media Scheduling Problem. Proc. 15th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, 2009.
- J. Kleinberg. Temporal Dynamics of On-Line Information Streams. In Data Stream Management: Processing High-Speed Data Streams, (M. Garofalakis, J. Gehrke, R. Rastogi, eds.), Springer, 2004.
- J. Aizen, D. Huttenlocher, J. Kleinberg, A. Novak. Traffic-Based Feedback on the Web. Proceedings of the National Academy of Sciences 101(Suppl.1):5254-5260, 2004. (Also available in pre-print form.)
- J. Kleinberg. Bursty and Hierarchical Structure in Streams. Proc. 8th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, 2002.
- See also some sample results from the burst detection algorithm described in this paper.
J. Leskovec, J. Kleinberg, C. Faloutsos. Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations. Proc. 11th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, 2005.
0 件のコメント:
コメントを投稿