2010年12月10日金曜日

[StreamGraph] Jon Kleinberg's Survey


時系列変化する動的グラフに関する参考文献 (http://www.cs.cornell.edu/Courses/cs6850/2008fa/より)

The Time Axis
Information networks are highly dynamic, but it is often hard to form a good picture of how they are evolving along their ``time axis.'' Temporal change spans many orders of magnitude, from the second-by-second dynamics of usage data to the year-by-year shifts in the global structure.
  • Survey Paper
  • Short Time Scales: Usage Data and Bursty Dynamics
    • L.R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition. In Proc. IEEE, Vol. 77, No. 2, pp. 257-286, Feb. 1989
    • J. Allan, J.G. Carbonell, G. Doddington, J. Yamron, Y. Yang, Topic Detection and Tracking Pilot Study: Final Report. Proc. DARPA Broadcast News Transcription and Understanding Workshop, Feb. 1998.
    • R. Swan, J. Allan, Automatic generation of overview timelines. Proc. SIGIR Intl. Conf. on Research and Development in Information Retrieval, 2000.
    • S. Havre, B. Hetzler, L. Nowell, ThemeRiver: Visualizing Theme Changes over Time. Proc. IEEE Symposium on Information Visualization, 2000.
    • J. Kleinberg. Bursty and Hierarchical Structure in Streams. Proc. 8th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, 2002.
    • J. Aizen, D. Huttenlocher, J. Kleinberg, A. Novak. Traffic-Based Feedback on the Web. Proceedings of the National Academy of Sciences 101(Suppl.1):5254-5260, 2004.
    • R. Kumar, J. Novak, P. Raghavan, A. Tomkins. On the bursty evolution of Blogspace. Proc. International WWW Conference, 2003.
    • Y. Zhu and D. Shasha. Efficient Elastic Burst Detection in Data Streams. Proc. ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, 2003.
    • E. Gabrilovich, S. Dumais, E. Horvitz. NewsJunkie: Providing Personalized Newsfeeds via Analysis of Information Novelty. Proceedings of the Thirteenth International World Wide Web Conference. May 2004.
    • M. Vlachos, C. Meek, Z. Vagena, D. Gunopulos. Identifying Similarities, Periodicities and Bursts for Online Search Queries. Proc. ACM SIGMOD International Conference on Management of Data, 2004.
    • A..-L. Barabasi. The origin of bursts and heavy tails in human dynamics. Nature 435, 207-211 (2005).
    • Micah Dubinko, Ravi Kumar, Joseph Magnani, Jasmine Novak, Prabhakar Raghavan, Andrew Tomkins. Visualizing Tags over Time. WWW2006 Conference. See also the demo of flickr tag visualization.
    • Xuerui Wang and Andrew McCallum. Topics over Time: A Non-Markov Continuous-Time Model of Topical Trends. Conference on Knowledge Discovery and Data Mining (KDD) 2006.
    • Xuanhui Wang, ChengXiang Zhai, Xiao Hu, and Richard Sproat, Mining Correlated Bursty Topic Patterns from Coordinated Text Streams. Proceedings of the 2007 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'07 ), pages 784-793.

Temporal Analysis and Bursty Phenomena

J. Leskovec, J. Kleinberg, C. Faloutsos. Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations. Proc. 11th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, 2005.


0 件のコメント:

コメントを投稿