2012年1月7日土曜日

Graph + Bioinformatics

Causal graph-based analysis of genome-wide association data in rheumatoid arthritis
http://www.biology-direct.com/content/6/1/25

Graph-based methods for analysing networks in cell biology
http://bib.oxfordjournals.org/content/7/3/243.full
Availability of large-scale experimental data for cell biology is enabling computational methods to systematically model the behaviour of cellular networks. This review surveys the recent advances in the field of graph-driven methods for analysing complex cellular networks. The methods are outlined on three levels of increasing complexity, ranging from methods that can characterize global or local structural properties of networks to methods that can detect groups of interconnected nodes, called motifs or clusters, potentially involved in common elementary biological functions. We also briefly summarize recent approaches to data integration and network inference through graph-based formalisms. Finally, we highlight some challenges in the field and offer our personal view of the key future trends and developments in graph-based analysis of large-scale datasets.

Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2912890/

The investigation of plant genome structure and evolution requires comprehensive characterization of repetitive sequences that make up the majority of higher plant nuclear DNA. Since genome-wide characterization of repetitive elements is complicated by their high abundance and diversity, novel approaches based on massively-parallel sequencing are being adapted to facilitate the analysis. It has recently been demonstrated that the low-pass genome sequencing provided by a single 454 sequencing reaction is sufficient to capture information about all major repeat families, thus providing the opportunity for efficient repeat investigation in a wide range of species. However, the development of appropriate data mining tools is required in order to fully utilize this sequencing data for repeat characterization.
Results
We adapted a graph-based approach for similarity-based partitioning of whole genome 454 sequence reads in order to build clusters made of the reads derived from individual repeat families. The information about cluster sizes was utilized for assessing the proportion and composition of repeats in the genomes of two model species, Pisum sativum and Glycine max, differing in genome size and 454 sequencing coverage. Moreover, statistical analysis and visual inspection of the topology of the cluster graphs using a newly developed program tool, SeqGrapheR, were shown to be helpful in distinguishing basic types of repeats and investigating sequence variability within repeat families.
Conclusions
Repetitive regions of plant genomes can be efficiently characterized by the presented graph-based analysis and the graph representation of repeats can be further used to assess the variability and evolutionary divergence of repeat families, discover and characterize novel elements, and aid in subsequent assembly of their consensus sequences.

Graph-based data mining for biological applications
https://lirias.kuleuven.be/bitstream/123456789/267094/1/phd_leander_schietgat_final_version.pdf

0 件のコメント:

コメントを投稿